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OF the questions to which the publication of the Principia gave rise, none has been
attended with greater difficulty than that which relates to the figure of the planets.
In this research it is required to determine the figure of equilibrium of a mass of fluid
consisting of particles that mutually attract one another at the same time that they
are urged by a centrifugal force caused by a rotation about an axis. Geometers have
long ago adopted a theory of the equilibrium of fluids which is said to be perfect, and
to leave only mathematical difficulties to be surmounted in every problem: but it

must be admitted that the utility of this theory amounts to very little; for it has

failed in solving the fundamental problem for determining the figure of equilibrium
of a homogeneous planet in a fluid state. This is the more remarkable, because Mac-
LAURIN, soon after the origin of such inquiries, demonstrated with accuracy and ele-
gance, that a planet supposed fluid would be in equilibrium if it had the figure of an
oblate elliptical spheroid. To every one that reflects, the question, not easily an-
swered, must occur, Why has it been found impossible to deduce the discovery of
MacrauvriN from the analytical theory? If we suppose that the theory is physically
correct, and that mathematical difficulties alone oppose its successful application,
there is great probability that these would have yielded, as in other instances, to the
repeated attempts of geometers.

But if Crarraut’s theory of the equilibrium of fluids be examined attentively and
without prejudice, other difliculties of greater moment will present themselves. In a
homogeneous fluid at liberty, if the forces in action be such as to make the problem
possible, the equilibrium, according to the theory, requires only one condition, namely,
that the forces urging every particle in the surface be directed perpendicularly towards
that surface. The solution is thus made to depend entirely upon the differential equa-
tion of the surface, and seems to demand that this equation be determinate, and ex-
plicitly given : for if the equation be indeterminate, or not explicitly given, how can it
be said that the problem is solved ? If the forces which urge the particles of the fluid
are explicit functions of the coordinates of the point on which they act, so that when
the values of the coordinates are assigned, the algebraic expressions are completely
ascertained, there is no doubt that the equation of the fluid’s surface will be known,
and the figure of equilibrium will be determined. With respect to such problems, the
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492 MR. IVORY ON THE EQUILIBRIUM OF A MASS OF

theory of Crarraut is therefore perfect, and it possesses all the elegance which might
be expected from the talents of the author. On the other hand, if the forces in action
depend upon the very figure to be found, as must always happen when the particles
attract one another, the equation of the surface will not be explicitly known, because
the differential coeflicients are derived, in part at least, from the unknown figure of
the fluid. Since quantities which depend entirely upon what is sought are not elimi-
nated from the final equation, the ordinary rules of mathematical investigation would
lead us to infer, either that the problem is not solved, or that it is indeterminate, and
admits of many solutions. It is allowed on all hands that there is a mutual connexion
between the figure of a mass of fluid and the attractions it exerts upon its particles :
the relation which these two things, alike unknown, must bear to one another in the
case of equilibrium, is expressed by the equations of the upper surface and of the
interior level surfaces; and therefore it seems hardly possible to deny that these equa-
tions are indeterminate. What is wanting to complete the solution of the problem
cannot possibly be supplied by any abstract or mathematical properties which the
indeterminate equations may possess ; and hence arises a suspicion that there is an
imperfection of the theory, proceeding, probably, from some necessary condition
having been overlooked.

None of the observations that have been made go the length of charging with in-
accuracy any of the properties of CrairauT’s theory, or any of the equations which
express those properties. An equilibrium of a mass of fluid entirely at liberty cannot
exist, unless all the conditions of that theory be fulfilled. The question is, whether
those conditions be sufficient to determine completely the figure of equilibrium in all
hypotheses respecting the forces. It is no small imperfection that the principal points
of this theory have not been deduced from the nature of an equilibrium in a manner
independent of opinion or arbitrary assumptions. If a strict mode of investigation
had been followed, we should have been in possession of a just criterion for ascertain-
ing in any particular case, whether all the conditions required for an equilibrium
were fulfilled or not. But in solving problems of this kind, it is often thought suffi-
cient to prove some enumerated properties, or to obtain certain algebraic equations,
which unavoidably introduces obscurity and occasions a want of evidence; since it
can hardly be supposed that the same properties, or the same equations, will bear
alike upon a great variety of problems differing from one another in the nature of the
forces urging the particles of a fluid.

Is not the principle, that the equilibrium of a mass of fluid is in all cases secured
when every individual particle is pressed equally by all the canals issuing from it
and terminating in the surface, an opinion or an assumption? That the property is
general, no one will doubt. But when the fluid consists of attracting particles, the
forces urging the particles and the pressures of the canals both vary when the upper
surface of the fluid is made to change: and may it not be alleged that the variation
of the figure of the mass may be such that the pressures of all the canals may still
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continue to be equal? Thus it may be possible that the assumed principle may be
fulfilled in the same body of fluid under different forms.

The difficulties which must be overcome before this subject can be freed from in-
accurate and insufficient reasoning, have occurred in problems relating to fluids of
uniform density ; and for this reason homogeneous fluids are alone treated of in what
follows.

1. Suppose that AB C represents a mass of homogencous fluid entirely at liberty,
the particles of which are urged by accelerating forces ; let

>

all the forces which act upon any element of the mass, as ’ N
dm, be reduced to the directions of three rectangular co- ]

ordinates z, y, z; and put X, Y, Z for the sums of the par- l G

tial forces respectively parallel to z, v, 3. Now, if Aa be ]

an infinitely slender prism of the fluid parallel to @, passing X 0

completely through the mass, and divided in its whole length @
into elementary portions, it is obviously a condition necessary to the equilibrium of
the body of fluid, that the forces X, acting upon all the elements of A a, mutually
destroy one another. ‘

What has been enunciated of a prism parallel to «, must hold equally of prisms
parallel to v and =.

Any element dm may be conceived as formed by the intersection of three slender
prisms parallel to z, y, 2; and, as the pressures in the whole extent of each prism
balance another, the element will be at rest, having no tendency to move parallel to
x, or to y, or to x. But no proof is required to show that an elementary portion of
a fluid in equilibrium must be pressed equally on all sides.

The forces which act upon the elements at the ends of any prism, A e, passing com-
pletely through the mass parallel to , are necessarily directed inward, and have op-
posite directions ; wherefore the force X, in varying through the whole length of A a,
must first decrease, then become equal to zero, and afterwards changing its sign,
increase in approaching the other surface of the fluid. Thus, in every slender prism
parallel to @, there is a point at which the force X is equal to zero; and if the whole
body of fluid be divided into such prisms, all the zero points will form a continuous
surface stretching completely through the mass. In like manner there will be two
other internal surfaces containing all the points at which the forces Y and Z are
evanescent. The intersection of the three surfaces will determine a point G within
the body of fluid at which all the three forces X, Y, Z, vanish, and which may be
called the centre of the mass in equilibrinm.

In considering the equilibrium of a mass of fluid entirely at liberty, it is obvious
that we may abstract from any motion common to all the particles, and from any
forces acting upon them all with equal intensity in the same direction. The forces
that must be balanced and rendered ineffective to produce motion, are such only as
tend to change the relative position of the particles with respect to one another ;
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whiclr supposes that the centre of gravity of the whole body of fluid continues at rest
and free from the action of any forces. Thus it appears that G, the only point of a
fluid in equilibrium not acted upon by any force, is no other than the centre of gravity
of the mass.

2. The equilibrium of a fluid entirely at liberty will not be disturbed by a pressure
of the same intensity applied to all the parts of the exterior surface.

By the intensity of a pressure is meant the amount of it when applied to some
given surface, most conveniently to the unit of surfaces. A constant pressure, or one
acting uniformly with the same intensity, is proportional to the surface to which it is
applied. ‘

This being understood, what is affirmed above is an iminediate consequence of the
fundamental property of an incompressible fluid to transmit a pressure exerted upon
its surface in all directions without any loss of intensity. The inward pressure upon
any part of the surface thus produces an equivalent outward pressure upon every other
part, which is balanced by the contrary pressure supposed to act over the whole sur-
face. Wherefore if a mass of fluid be in equilibrium, it will continue in equilibrium,
supposing a pressure of the same intensity to be applied to all parts of the surface.

3. The action of the forces upon the particles in the interior parts of the body of
fluid is next to be considered.

Take any point (2 y ) of the mass, and draw through it in any direction a plane
surface w infinitely small and of any figure; from the same point (z v 2) draw the
infinitely short line 8 s perpendicular to w, and construct an upright prism upon the
base w with the height 8 s. The forces acting upon a particle at the point (z y <)
being represented as before by X, Y, Z, and the coordinates of the end of s being
x4+ 0,y + 0y, z + 0 2, we shall have this identical equation,

(Xax—l—Y +ZSS)XBSXw—(XBx—I—YBJ-FZBz)Xw
or by introducing a new symbol,
F=X4r+Y 32 +745,

Fxosxw=Xdae+Ydy+ Z5z) x w.

) D) oz . . . .
Now 8:’ EZ > §g s are the cosines of the angles which the directions of the forces

. b
make with 9 s: wherefore X 78?7 Y b—ys s Z 8 , are the partial forces urging the par-

ticle (zy z) in the direction of 8s; and the whole accelerating force in the same direc-
tion is equal to F. The density being constant, and represented by unit, the mass of
the prism will he equal to s X w; and as this may be as small as we please, we may
assume that every particle of it is urged by the same force F'; so that F X ds X w is
the effort of the prism to move from the point (zy z) in the direction of 55s. Let p, a
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function of z, y, z, represent the intensity of pressure at the point (xy =), and p +0dp
will be the intensity at the other end of 0s: the external pressures acting upon the
opposite ends of the prism are therefore p X w and (p 4 9 p) X w; and the difference
of these, or 8 p X w, is the impulse causing the prism to move towards the point (zy 2)
in the direction of 8s. Now, the prism being at rest, the impulses F X s X w and
8p X w, which tend to move it in opposite directions, must be equal; wherefore,
taking the foregoing value of F X 0s X w, and suppressing the factor w, which is
common to the equal quantities, the non-effect of the opposite forces requires this
equation,
—dp=Xd0a+Ydy + Zdx,

which expresses that the effort of the accelerating forces to move the prism in any
direction is counterbalanced by the contrary action of the pressure. The equation
must hold at every point of the mass, without any relation being supposed between
the infinitely small quantities 8, 3y, 0z ; which condition requires that

Xoa+Yoy+Zdx
be the variation of a function in which the three variables x, y, 2, are independent of
one another. If this function be represented by ¢' (z,¥, ,), so that

S Xde+Ydy +Zdx)=¢ @y,2)
we shall have
C— p= @I (‘T.? Y, Z,),
The forces respectively parallel to «, y, 2, are now thus expressed :
d. ¢ (@, y, 2 d.¢ (x,y, 2 d.¢ (2,9, 2

The differentials of ¢’ (2, v, %,) vanishing at the centre of gravity, the function will
increase on every side in receding from that point; and when it becomes equal to C,
we shall have

C = @’ (‘T’ y) z’)’
which is the equation of the surface of the fluid, the pressure p being equal to zero
at all the points of that surface.

If an infinitely narrow canal of any figure be extended from the point (z y 2) to the
surface of the fluid, the intensity with which ail the fluid in the canal presses at the
point (2y %) will be equal to the function p. Let the whole '
length of the canal be divided into small parts, 3s, 3¢, 0",

&c. ; and at every point of division draw the sections w,

w', w'", &c., perpendicular to the sides of the canal, which

will thus be divided into an infinite number of small prisms,

to every one of which the foregoing investigation will ap-

ply. Wherefore, the variation of the intensity of pressure, \

or dp, in the length of any prism, will be just equal to the action of the accelerating
forces upon the particles of the prism ; and the intensity with which all the fluid in the

3s2
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canal presses at the point (z y =) will be equal to the sum of all the variations of the
function p in the whole length of the canal, that is, to the difference between the
value of p at the point (2 y =) and at the surface of the fluid. Now the value of
p at the surface of the fluid is equal to zero ; wherefore, the intensity with which all
the fluid in the canal presses at the point (2 y 2) is equal to the value of p at that
point.

It follows from what has been proved, that every narrow canal drawn from any
point (z y =), and terminating in the surface of the fluid, will press at that point with
equal intensity. Hence, if an infinitely small mass of the fluid, such as a sphere, or
a cube, &c., be situated at the point (v y %), it will have no tendency to move by the
action of the surrounding fluid ; for it will be equally pressed by all the narrow canals
standing upon different portions of its surface, and extending to the surface of the
fluid. This property is perfectly general and necessary ; and it may become a ques-
tion, whether it be not alone sufficient to secure an equilibrium. Without entering
upon the discussion of this question, we here confine our attention strictly to what
has been demonstrated, namely, that in a fluid in equilibrium, every infinitely small
portion is pressed with equal intensity by all the narrow canals issuing from it, and
terminating in the surface of the fluid *.

4. According to what has been shown, the forces which urge the particles of a fluid
in equilibrium, and the consequent pressures, depend upon one function ¢' (z,y, ,),
varying in its value as the coordinates change their place from the centre of gravity
to the surface of the fluid. The same function likewise determines the figure of the
mass ; for, the fluid being at liberty, the surface will contain all the points at which
there is no pressure. If p denote the pressure at any interior point (x y 2), this equa-
tion has been investigated, viz.

C—p=0¢(®y,2);
and if we make p = 0, the result, viz.
C=¢(xy,2)

must be verified at all the points of the surface. But it is to be observed, that instances
may occur in which the function ¢’ (¢, y, z) in passing from a point within the fluid
to a point in the surface, undergoes a modification in the form of its expression. It
may happen that the quantities which it contains acquire particular relations at the
surface; and on this account the function may put on a singular form, distinguished

* If the mathematical principle of the property respecting the canals be stated abstractly, it will be found
to lie in the nature of the function p, which must be a maximum at the centre of gravity, the point of greatest
pressure ; and continually decreasing in receding from that point, it must have the same value at all points of
the surface of the fluid. Now it is not impossible but, in some problems, there may be more than one function
that will satisfy the two conditions ; and, should this be the case, the figure of the fluid remaining the same,
the property respecting the canals would be verified in more than one supposition respecting the pressure and
the forces in action.
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in some respects from the original expression as it exists in the interior parts. We
may suppose that ¢' (z, y, =) changes into ¢ (2, y, 2) at the surface of the fluid ; inso-
much that ¢' (2, y, 2) and ¢ («, y, %) are identical for all the points in the surface, but
are different from one another when the coordinates of any other point are substituted.
The pressure at any interior point being determined by the expression

. C—p=9¢@y2);
the equation of the fluid’s surface will be

C= ® (31‘, Y, 2:) 5
the first formula being identical with the second at the surface, or when p = 0.

The hypothesis of which we have been speaking is not an imaginary one, for a
homogeneons planet in a fluid state is an example in point. In this case the forces in
action are partly the attraction of the mass upon a particle; and as the fluid has a
spheroidical form, the attraction upon a particle in the surface is more simple in its
expression, and depends upon fewer quantities than the like force upon a point within
the surface. Although it is true universally that the forces urging a particle in the
surface of a fluid in equilibrium are deducible from the general expressions of the
forces in the interior parts, yet in such cases as that mentioned it does not hold con-
versely that the latter forces are deducible from the former. This distinction, which
is important, is not attended to in Crarravr’s theory, which tacitly assumes that the
forces are invariably expressed by the same functions without any change of form,
whether the point of action be in or below the surface of the fluid.

It appears from what has been said, that in solving problems of equilibrium it is
necessary to begin with inquiring in what manner the forces at the surface, which
always depend upon the equation of the surface, are connected with the forces sup-
posed to act upon the particles within the surface. A twofold division must be distin-
guished. In the first and more simple class of problems, it is assumed that the func-
tion ¢' (2, y, z) from which the forces are deduced, undergoes no modification at the
surface, but retains immutably the same form of expression at every point of the mass.
In the other class of problems the function ¢’ (x, y, 2) is supposed to undergo sowe
modification at the surface of the fluid; so that the forces in the interior parts admit
of a twofold expression, one derived from the original function ¢' (z, ¥, ), and another
from the particular form ¢ (, y, ), which that function assumes at the surface. In
such cases the equilibrium will depend upon two different algebraic expressions, and
not upon one only, as in the first division, or in Crairaur’s theory.

5. The following theorem contains all that concerns the equilibrium in the first and
more simple hypothesis, namely, when the functions of the coordinates whicn express
the forces undergo no change of form in passing from a point in the surface of the
fluid to a point within the surface.
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Theorem.

If a body of homogeneous fluid at liberty have for the equation of its surface,

C=¢@®y,=),
the mass will be in equilibrium, supposing that every particle (x y ) is urged by the
forces X, Y, Z, respectively paraliel to the rectangular coordinates z, v, z, and equal
to the partial differential coefficients of ¢ (@, y, z), that is, ‘

d.d(ayy, 2 d.d(xsy, 2 d.d (1, 2
X = %;A‘): Y = W%(Z,;ﬂ’_)., 7 = _92;_%.)

The origin of the coordinates being placed at the centre of gravity of the mass, the
theorem must be supposed to assume further, that the expressions of the forces, that
is, the differential coefficients of ¢ (v, ¥, %), vanish when the coordinates are all equal
to zero ; for without this condition the equilibrium of the mass of fluid would be im-
possible. From this it follows that the value of ¢ (@, ¥, 2) will increase continually
as the point (v y 2) recedes from the centre and approaches the surface of the fluid
on any side. If C° denote the value of ¢ (2, y, ) at the centre of gravity, C — C° will
be the whole increase in varying from that point to the surface of the fluid; and as
every gradation of magnitude is passed through, an interior surface may be found that
will satisfy the equation

C=9¢@y, 2,
provided C' be any quantity between the limits C and C°. Wherefore if C — C° be
divided into an infinite number of elementary portions, each equal to o p, there will
exist a series of curve surfaces gradually contracting in their dimensions round the
centre, and the last containing a drop of fluid, which may be as small as we please ;
of which successive curve surfaces, beginning with the upper surface of the mass,
these are the respective equations :

C= o («’”»3/, ), or C= o,

C -2 pP= @,

C—23% p=29,

C—-30p =09, &ec.

From A in the upper surface draw A A’ perpendicular
to the surface next below; put £ = A A/, the thickness
of the stratum; and let w denote any infinitely small
portion of the curve surface at A'; then £ X w will be
the portion of the stratum insisting on the small surface w.
The coordinates of the point A’ being «, y, =z, the forces in
action and respectively parallel to the coordinates will be

d¢ d¢ do¢
da> dy’> dz’
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and by these forces we may suppose that every particle in the small mass & X w is
urged. Now let

P/ () ()

and by a well-known property, the cosines of the angles which the coordinates of the
lower surface of the stratum make with the normal of the same surface, will be re-
spectively equal to

1 do 1 d¢ 1 de
T X g I‘Xdy T X4z

and hence the sum of the partial forces acting in the direction of &, will be equal to

d ¢ d¢ 1 /d ¢\? _
() + v (@) - () =
wherefore, F X & X w will be the impulse or pressure exerted by the small mass
k X w upon the small surface w, on which it insists. Again, the coordinates of the
end of k in the upper surface of the stratum, are

Eodg Eode Eodg
e+ yoge YT ooy 2T TF T

and as the equations of the two curve surfaces are

Eodo kodo k do
C=¢.(+7F- lzx’y+?@"z+‘ﬁ*-z;)’

C—dp=29.(0,y,2);

= L+ () + () =

Wherefore, the pressure F X & X w of the mass k X w upon the small surface w, will
be equal to 8p X w; which proves that the incumbent stratum exerts a constant
pressure upon the surface passing through A', the intensity at every point being equal
to 0p. The like demonstration may be employed to show, that any other stratum
exerts a constant pressure upon the fluid below it; and hence it follows, that all the
fluid above any of the interior surfaces, whatever be the number of strata it consists
of, presses with the same intensity at every point of the surface. Now the forces
urging the particles of the fluid decrease continually in approaching the centre of
gravity, at which point they are evanescent: wherefore the infinitely small mass, or
drop, contained within the surface nearest the centre, may be considered as free from
the action of any accelerating forces; and, its surface being subjected to the constant
pressure of all the incumbent strata, these pressures, the directions of which ultimately
pass through the centre of gravity, will balance one another without any tendency to
produce either progressive or rotatory motion.

If n be the number of strata above any of the interior surfaces, the intensity of

we deduce,
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pressure at all the points of the surface will be » X 3p; and the equation of the sur-
face being

C—nx 8]’: P ('Z‘,.%%),
if p =n X dp, we shall have

C—p=9¢(@®y2),
which equation ascertains the pressure at any point (zy 2), and determines the sur-
face containing all the points at which the same pressure prevails. This agrees with
what was investigated in No. 3.

The interior surfaces at all the points of which the pressure is constant have been
called level surfaces; and a stratum of the fluid lying between two level surfaces is
called a level stratum.

A property common to all the level surfaces, and to the upper surface of the fluid,
consists in this, that the resnltant of the forces acting upon a particle contained in
any of these surfaces is directed perpendicularly towards it. Take two points, (zy )
and (¢ 4+ 3,7 + 8y, ¥ + 0 ), infinitely near one another in the surface of which the
equation is

C—p=o(v,y,2);
and put 3 s for the short line between the two points ; by differentiating, C — p being
constant, we get

Q

d¢ da
da'ds

or, which is equivalent,

do | o dy | o ds _
Xa_§+Yd—s+Z7;—-0.

do dy  do dz _
tayas T =0

Now %, %i—/, g—;’i are the cosines of the angles which the directions of the forces make
with the line ds: wherefore the algebraic expression in the last equation is the sum
of the partial forces which act in the direction of ds; and as this sum is equal to
zero in all positions of that line round the point (2 y 2), the forces will produce no
effect in the plane touching the curve surface, and will exert their whole action at
right angles to the surface.

From what is here investigated, we may derive this general property: If the forces
X, Y, Z, which vary from point to point, be always perpendicular to a surface, they
must satisfy this equation,

Xde+Ydy+Zdz =0,
the coordinates being made to wvary in the surface. For if the equation be divided
by ds = /da*> + dy? + d 22, the result will be

dax dy dz __
X-J}“—I—Y;{—;—FZE?—O,

which expresses, as is shown above, that the whole action of the forces is perpendi-
cular to the surface.



HOMOGENEOUS FLUID AT LIBERTY. 501

It may be observed further with respect to the level surfaces, that in forming their
equations, nothing is supposed to change in the general equation

C—p=0o@y, ), _

except the quantity C — p, which is constant in every individual surface, and the
values of the coordinates, the form of the function ¢ (x,y, ), and all the coefficients
it contains, remaining immutably fixed. Every particular surface has, therefore, its
independent equation, which is completely defined when the value of its constant is
ascertained : and, as the equation of the upper surface determines the equilibrium of
the whole mass of fluid, so, for the very same reasons, the equation of any interior
level surface will determine the separate equilibrium of the fluid within it, supposing
the constant pressure of the incumbent stratum to be taken off or annihilated.

The foregoing theorem, which is equivalent to the theory of Crairaur, cannot pos-
sibly be attended with any difficulty. But if the simplicity of the matter conduces to
make it clear, it also greatly narrows its application. The theorem is sufficient for
determining the equilibrium when the forces are explicit functions of the coordinates
of the point of action ; that is, such functions as are entirely known when the values
of the coordinates are assigned. In this case, the differential equation of the surface
must first be formed ; and, this being integrated, we obtain the equation of the figure
which the fluid must assume. ’

But the theorem is not sufficient for determining the equilibrium when a fluid
consists of particles that mutually attract one another; because, in this case, the
forces, varying with the figure of the fluid, are not explicit functions of the coordi-
nates of the point of action ; and because the expressions of the forces for a point in
the surface of the fluid are in some respects different from the like expressions for a

-point within the surface, which is contrary to the hypothesis of the theorem. The
problem thus assumes a new aspect, and further researches are required for its
solution.

6. In the second division of problems, if the equation of the surface of a mass of

fluid be ‘
C=0¢(xy,z) orC=9,

the forces which urge the particles within the surface are expressed by the differential
coeflicients, viz. '
d¢' d¢' d¢

dz’ EEJ: daz’
of a function ¢' (2,y, ), which is different from ¢ (x,v, z), for all the points within
the surface, and identical with it for the points in the surface. The equilibrium re-
quires that the forces acting upon the interior particles, or the differentials of ¢ (2,y,%),
vanish at the origin of the coordinates in the centre of gravity ; and this will not take
place if ¢' (2,7, z) contain any terms such as Az, By, Cz, the coefficients A, B, C
being constant quantities. And since ¢’ (2,y, 2) is changed into ¢ (z,y, z) when the

MDCCCXXXIV. ‘ 3T
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coordinates have particular values, it follows that ¢ (x,y, 2) will contain no terms
such as Az, By, Cz; and consequently that its differential coefficients, viz.

do do de¢

da dy’ dz’
will vanish at the centre of gravity. Wherefore, in all problems of this class, the

foregoing theorem may be applied to the equation of the surface of the fluid, since
the necessary conditions are fulfilled.

Now attending solely to the equation of the surface, viz.

C=0(®y,%),
it has been shown that the expressions

d¢ d¢ do¢

dx dy> dz°
represent forces respectively parallel to the coordinates, the resultant of which is di-
rected perpendicularly towards the surface. If it be supposed that every particle of
the fluid is urged by forces expressed by substituting its coordinates instead of the

do d
coordinates of the surface in the same functions - ¢, d;’ d;p, it is proved in the theo-

rem that the mass will be in equilibrium, and may be divided by an infinite number
of level surfaces into thin strata that exert a constant pressure upon one another.

We have, therefore, now to inquire how the equilibrium which takes place when

d d¢ d¢
T dy d= e the forces in action, is to be preserved when, instead of these, the

rde do . . .
other forces, di’ d;, (di’ are substituted. These latter forces may be considered as

produced by additions made to the first, and they may be thus written,

(lqb’ d ¢ d¢ de  do d4> d¢' dcp
+ _(lz") +((ly )

and supposing the Whole body of fluid to be divided, as in the theorem, into thin

d
level strata, to which the joint action of the forces dj’ dj’ d;p is at every point per-

pendicular, it is evident that the equilibrium will be destroyed when the additional
forces come into action, unless their resultant, urging any particle, be perpendicular
to the level surface in which the particle is contained; but if the resultant be per-
pendicular to the level surface, the equilibrium will not be disturbed, because the
thin strata will still continue to exert a constant pressure upon one another in like
manner as before the new forces were introduced *. However the additional forces

dcp' d¢!  do d¢!  d¢
) ( 1)’ dz ~ dz

* It is by means of this very general principle that we pass from the equilibrium of a homogeneous fluid to
that of one in which the density, being constant at all the points of the same level surface, varies, according to
any law, from one level surface to another.
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be supposed to vary in passing from one level surface to another, there will be no
tendency to destroy the equilibriumn, provided their action be directed perpendicularly
to every such surface. The perpendicularity of the resultant of the additional forces
to a level surface is expressed by this equation,

@ )d +((ly %)dy'l'(%"%)dz:o;

or more s1mply by this,
d.¢ (x,y,2) —d.o(xy =) =0,
the coordinates varying in the level surface.
We can now assign the conditions necessary for the equilibrium of a mass of homo-

geneous fluid at liberty, the particles of which are urged by the forces 12’ g; R ZZ X

de d d
at the surface, and by the forces dz’ d;’ d¢’ within the surface; the functions

¢ (v,y,2) and ¢ (x,, 2) being identical for all the points in the surface, and different
from one another for all the points within the surface: first, the resultant of the
forces in action at the surface must be directed perpendicularly towards that surface;
and secondly, supposing the coordinates to vary from point to point of the same level
surface, the differential equation

d~¢, (m,y,z) - d‘P(x,.%Z) =0
must be verified at all the points of the level surface.

In the hypothesis respecting the forces under consideration, there are two inde-
pendent pressures at every interior point of the fluid; one caused by the forces

g—g—, %’ %, deduced from the equation of the upper surface of the fluid ; and the
other by the additional forces
d ¢ de d <p d :p’ d ¢
~at i) (&

and the equilibrium of the fluid W1ll be unposs1b]e unless the mass can be partitioned
by an infinite number of surfaces, in every one of which the two pressures are both
constant *. Now the pressure caused by the forces g—% s Zj , gf , 18 constant in
all the surfaces called level surfaces in the theorem ; and as these surfaces depend
solely on the equation of the figure of the fluid, it is obvious that no figure can be
induced on the mass that will secure the equilibrium, unless the pressure caused by
the additional forces be likewise perpendicular to the same level surfaces. But if
both pressures be constant at all the points of every level surface, which is the con-

dition expressed by the equation |
d.¢ (2,y,2) —d.9(xy,3) =0,

* In no other way is it possible that the pressures propagated through the mass can balance and sustain

one another.

312
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the equilibrium of the fluid will obviously be a consequence of the theorem. It is
therefore demonstrated, with respect to problems of the second class, that the equa-
tion of the upper surface of the fluid is not sufficient by itself to determine the equi-
librium of the mass.

In the theorem, the term level surface is liable to no ambiguity ; but in the more
complex state of the forces that occurs in the second division of problems, two dif-
ferent systems of surfaces in which the pressure is constant require attention; for the

d d de . . . .
pressure caused by the forces El':%’ Eg’ E—S"’ is constant in all interior surfaces de-

termined by the equation
d.o(x,y,z) =0;

de d¢ d¢ . .
and the pressure caused by the forces 3—:}, ﬁ, ?i%’ is constant in all surfaces of

which the general equation is

d.¢ (v,y,2) =0.
It will therefore conduce to clearness if the meaning of a level surface be restricted, by
adding to the two properties of being perpendicular to the resultant of the forces
acting on the particles contained in it, and being pressed at all its points with the
same intensity, the further condition of being deduced by varying the constant in
the equation of the upper surface of the fluid. The effect of the equation

d.¢ (x,y,2) —d.o(x,y,2) =0

is to verify the two differential equations above mentioned at all the points of the
same surface: it implies that the two systems of surfaces of constant pressure are
blended in one ; and as this is a necessary condition of equilibrium, it distinguishes
from all other figures those which are alone susceptible of an equilibrium.

7. The general theory of the equilibrium of homogeneous fluids at liberty having
been explained at sufficient length, it is next to be applied to some of the principal
problems.

ProsrLeEm 1.

To determine the equilibrium of a homogeneous fluid at liberty, the particles attract-
ing one another with a force inversely proportional to the square of the distance,
at the same time that they are urged by a centrifugal force caused by revolving
about an axis.

The mass of fluid being in equilibrium, the centre of gravity will be free from the
action of any forces; and as the attractive forces balance one another at that point,
there must be no centrifugal force at the same point; that is, the axis of rotation
must pass through it.

The origin of the coordinates being placed in the centre of gravity, let x, y, 2, de-
note the rectangular coordinates of a particle of the fluid, and 2/, ¥/, 2/, those of a
molecule dm of the mass, the two coordinates x and 2’ being parallel to the axis of
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rotation: and f being the distance between the assumed particle and the molecule
d m, we shall have

S=@—aP+ (y—y)+ (- )

The attraction of spheres, according to the law supposed in this problem, being
the same as if all the matter were collected in the centre, we may adopt for the unit
of mass a sphere of the fluid having its radius equal to the unit of distance; and for
the unit of force, the attraction of the sphere upon a point in its surface; then the

direct attraction of the molecule d m upon the particle at the distance f, will be i—;f;

and the partial attractions urging the particle inward in the directions of , y, 2, will
be respectively equal to
dm x—2 dm y—y dm z—2
VA AV AV
Now if we observe that
e—a _df y—y _df z—2 _df
S =d» f =dy Yy’ ;T dz
it will readily appear that the sums of the attractive forces, with which all the mole-
cules of the mass urge the particle inward in the respective directions of @, ¥, z, may
be thus commodiously expressed :
dm dm dm
ST S ST
de ’ dy ~’ dz °
the integral extending to all the molecules of the mass.

The attraction of the sphere at its surface being represented by unit, the velocity
communicated by that force in the infinitely short time d ¢, will be 1 X d¢; and if
the time of one entire revolution about the axis of rotation be denoted by T, the
velocity generated by the centrifugal force at the distance of unit from the axis in the

. . 4 7? . . .
time d ¢, will be —;li;— X d t; wherefore the centrifugal force acting at the distance of

unit from the axis of rotation, and estimated in parts of the unit of force, will be
equal to

47

"‘r‘ftf = ¢.
At the distance of /42 + z? from the axis, the centrifugal force will therefore be
¢ X /9% + z%; and the resolved parts of it which urge the particle in the prolon-
gations of ¥ and 2, will be equal to ¢ X y and ¢ X x.

Now if X, Y, Z represent the total forces tending inward and urging the assumed

particle in the directions of the coordinates, we shall have

' d m dm
d. d. [ — d. —
X = — ff, Y—"—(m‘/d;‘f +éy); Z:"—_( dzj_°+gz);
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wherefore, p denoting the intensity of pressure, we obtain

d/fd+/‘fd+dfdnz

dp = L dzte(ydy + =d2);
and by integrating,
=/‘—lf’”+(—;—y2+z2)—cz. S ¢ B
and from this the equation of the surface of the fluid is derived by making p = 0, viz.
O=[/‘£Z7”3]—|——,§—(y2+z2)—0, L@

the brackets signifying that the inclosed integral is deduced from an attracted par-
ticle in the surface of the fluid.

The integral f df—m in the last equations is the sum of all the molecules of the fluid

mass divided by their respective distances from the attracted point. In equation (1.)
the pressure p varies through all gradations of magnitude, from zero to the maximum
value at the centre of gravity. The exact import of this equation is therefore attended
with no difficulty. '

The integral for a point or particle in the surface of the fluid, distinguished by
brackets in equation (2.), is a particular or singular value of the general integral.
When the attracted point is within the surface, the value of the integral depends not
only upon the coordinates of that point, but also upon the limits of the integrations,
which are determined by the equation of the surface of the fluid ; but when the at-
tracted point is in the surface, the expression of the integral is more simple, because
it involves only the coordinates of the surface. The particular integral is obtained
from the general one by substituting the coordinates of the surface ; but the integral
for a point within the surface cannot be derived by any change of coordinates, from
the modified and singular form which the expression assumes at the surface. From
this it follows that the level surfaces deduced from the equation of the upper surface
of the fluid, are different from the interior surfaces determined by making p constant
in equation (1.).

Relatively to the linear dimensions of the mass of fluid d m is a quantity of three

dimensions, and therefore the integ'raM%p@ being extended to all the molecules of

the mass, is only of two dimensions. Let 2, y, 2, R represent the coordinates of an
attracted point in the surface of the fluid, and the radius drawn from the same point
to the centre of gravity; further, assume

R S S .
=Veirr® (T Verer® CTVEipi

and the quantities @, b, ¢ will depend only upon the angles that determine the di-
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rection of R: then [ f -f——] being a function of two dimensions, in which =, y, x are
. 1 d . . . . . .

the only variables, s X [ 7”3] will be a quantity of no dimensions; it will, there-

fore, be a function of %, Ry—, —I%, or of @, b, c¢; so that we shall have

[f”ll—]gl]:szF(a,b,c), R 8

F being the mark of a function. The same value may be expressed by means of the
coordinates, viz.

[ d?‘@:] = (‘2:2 +3/2 + %2) X F (4/.2:'2 +a;2 + %2 A 22 _l_:[;ﬂ + 22 A ? +22 EQ)

If the value just found be substituted in equation (2.), the result will be,
C=@+y+) X F (Jaros Voo Vi) + 2 X 0P+ 2):
which proves that the forces in action at the surface of the fluid are not sufficient to
determine the equilibrium of the mass. For the equation of the figure of the fluid at
which we have arrived, containing an arbitrary function, is indeterminate; and, on
examination, it will be found to comprehend the ellipsoid and innumerable other
figures*.

If for «, y, = we substitute their values Ra, R b, Re, the equation of the surface
will assume this form,

C=WX{F@¢@+%W+@%.

The equation of a level surface is deduced from the equation of the upper surface by
changing the constant, and substituting the coordinates of the level surface for those
of the upper surface : now, supposing that r, in the same straight line with R, is a
radius of a level surface, the coordinates of the point in that surface at the extremity
of » will be » @, r b, r ¢, because r and R have the same direction : wherefore, by sub-
stituting r a, r b, r ¢ for 2, y, z in the equation of the upper surface, and denoting the
new constant by C', the equation of the level surface of which r is the radius will be

O:mx{F@a@+%wLHﬂ}

The comparison of this equation with that of the upper surface of the fluid leads to
this result,

=<

72 C

—

RZ"- "

* In a particular examination of Crarraur’s theory that occurs in the sequel of this Paper. it is proved from
different principles, that the equation of the figure of the fluid deduced from the forces in action at the surface
is indeterminate, and admits of innumerable solutions,
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from which it follows, that every interior level surface is similar to the upper surface,
and similarly posited about the centre of gravity.

The expression of the integral in equation (3.) is evidently true in all similar sphe-
roids, without any change in the function F; for F, being of no dimensions, contains
only the proportions of the linear dimensions of the geometrical figures, and these
proportions are the same when the figures are similar. And, since all the level sur-
faces are similar to the upper surface, it is obvious that the equation of a level sur-
face may be thus expressed,

=[/F]+ 5 @+

because the integral between the brackets, which stands for the sum of all the mole-
cules within the level surface divided by their respective distances from a point (zy =)
in that surface, is equal to the part of the equation of the level surface which contains
the function F. Now the equilibrium of the mass of fluid will be impossible, unless
the pressure determined by the equation (1.) be constant at all the points of the same
level surface ; which requires that the equation

A SF+iw+at=a{[[F ]+5(J +2)}

be verified, the coordmates of the attracted point varying in any level surface*. This
differential equation will be fulfilled if the equation

constant =/‘ff—-~m - [/%?]

hold at all the points of every level surface. And as the integral without brackets
is the sum of all the molecules of the whole mass of fluid, divided by their respective
distances from the attracted point in the level surface; and the integral with brackets
is the like sum relatively to all the molecules within the level surface ; the last equa-
tion may be expressed more simply thus,
constant = (ff——m,

the integral being extended to all the molecules of the stratum between the level
surface and the upper surface of the fluid. In the figures which verify this equation
there will exist in the interior parts no surfaces of constant pressure except the level
surfaces, which is a necessary condition of equilibrium ; and the intensity of pressure
in every level surface will be determined by the equation (1.), as required in the
problem.

We have next to investigate the figures which verify this last equation. Let s re-
present the distance of dm from the centre of gravity; and, » being drawn to an

* That is, of every surface determined by varying the constant in the equation of the upper surface, accord-
ing to the definition in No. 6.
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attracted point in a level surface, put ¢ and ¢ for the angles which » and s make with
the axis of rotation; and = and »' for the angles which determine the positions of
the projections of » and s upon a plane passing through the centre of gravity perpen-
dicular to the same axis: then + being the angle between the two lines r and s, and
Jf the distance of dm from the attracted point, we shall have

v = cos v = cos @ cos § -+ sin dsin ¢ cos (= — '),
f=a/=2sr.y +r2

Again, if the plane of the two lines r and s describe the small angle d ¢ by revolving
about », the extremity of s will describe the short line s cos +J d ¢ perpendicular to the
revolving plane: further, supposing that the arc 4 increases to + d +J, the extremity
of s will move through the short line s d in the plane of the arc ¢ ; now the short
lines s cos < d o and s d +J being perpendicular to one another and to s, the molecule
d m may be considered equal to scosdo X sd4 X ds; or, which is the same
thing, we may assume

dm=—dydes.s?ds.

By substituting the values of d m and f, the integral under consideration will be thus
expressed :

Y

the integrations being extended to all values from y = 1,6 =0,to y = — 1, 6 =27,
and from s =7/, to s = R/, » and R’ being two radii in the same straight line, the first
of a level surface, and the other of the upper surface of the fluid. The radical quantity

. . roo.
must now be expanded in a series of the powers of —, viz.

1 I

S + $
the coefficients being determined by the formula

) S
1.2.3...idy""

r%
S@

O+ 50 5 4 ke,

i 1
C()=—;-X
2

and having substituted this series, and effected the integrations with respect to d s
between the assigned limits, the result will be

‘lf——’”=—;— (= dyds ®2—17)
trff=dyds®R =r)C®
+'r2‘/. — dvydo‘log‘%‘, x ¢®

* Vide Appendix,
MDCCCXXXIV, 3u
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+ 7= dvas(5—g) ¢
+5 /)= dvis (G —g) ¢

fo d ydo =2 Rﬂ*u) C(i)'

Because every level surface is similar to the upper surface, and similarly posited about
the centre of gravity, and that » and R, as well as ' and R/, are radii of the two

surfaces in the same straight line, we have

r=e«.R, " =«.R)
« being a fraction of unit, which is the same for all the points of the same level sur-
face ; wherefore, by substituting the values of » and 7/, and leaving out the term

2= dydolog™ x ¢ =Reatlog+ . [f~dyds C?,

which is equal to zero, we get

=12t [~ ayis. R
+@—Rf ) —dydec? R

—dy(lo‘ c®

+ (e? — &?) R?"/n  —

o? — o) R —_d do‘C(4)
~ 2) ./f e

(a—ac) f -—dydo‘CO)

i—2 Ri—2

Such is the expression of the integral under consideration, the attracted point being
the intersection of R, with the level surface of which « R is a radius; and the value
of the integral must be constant at all the points of the same level surface, that is, it
must be the same when « is the same in whatever direction R be drawn.

In the first place, if the figure of the fluid be a sphere, the expression of f idJ;ﬁis re-

duced to its first term, which is constant in every spherical surface concentric with
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the upper surface ; because by the nature of the functions C all the integrals vanish
when R’ is constant. But the supposition of a sphere requires that s be equal to zero
in the equations (1.) and (2.), or that there be no centrifugal force.

. . . SR T d
But if the radius R vary as it changes its direction, —;—n cannot be of the same

quantity at every point of the same level surface, except when all the terms after the
first are separately equal to zero, that is, except the expression of R' be such that

f dyzd: C(Z) = O:
R
for all values of z from 1 to ».

The investigation will be greatly facilitated by the following theorem :
If = cos ¢, b = sin ¢ cos @, ¢' = sin ¢ sin =/, the integral

JS=dydec®d" v ",

extended to all values of y from 1 to — 1, and of ¢ from 0 to 2 #, will be equal to
zero in all cases when m 4 m' 4+ m" is less than ¢*.

It is obvious that p is a function of the three quantities a, v, ¢; and if we

assuime
1

0, 1 2)
s =09 4 U0 4 U®,
y© being a constant, and U(l), U® functions such that @', ', ¢ rise to one dimension

in all the terms of U(l), and to two dimensions in all the terms of U(Q), the highest

sum of the indexes in the combinations of o, ¥/, ¢/, contained in the expressions of
3 2 b

1 1 1 .
T RO RE &e., will not exceed 4, 6, 8, &c.: wherefore, by the theorem, the

. . . l <y s .
assumed value of 7p will succeed in making all the terms of f -if—m vanish in which

7 is an even number, and it is evidently the most general assumption for 7 that will

answer the same end.
When 7 is an odd number, we have

J‘ —-a’ydo-C(' f/‘ —dych(i)
‘ Ri-2 ©) W 2 i—2
(U@ + o 4 )72
In this case C(i), being an odd function of y, is the same in quantity, but changes

its sign, when for ¢ and »' we substitute ¢ -+ —Z— and »' 4 7 : wherefore the whole in-

tegral will be equal to zero, if the denominator retain the same positive value when
¢ and =’ are changed into ¢ -+ % and »' - 7, the increase of the integral being, on

* Vide Appendix.
3u2



512 MR. IVORY ON THE EQUILIBRIUM OF A MASS OF

this supposition, exactly compensated by the decrease. But this requires that u®
be exterminated, because this function varies its sign when ¢ and »' are changed into

0+ 5 ” and @' + 7. Wherefore, leaving out U(l), if we assume
—Rﬁ — U(O) + U(Q)

it will follow from what has been said, that all the terms of / d772 after the first, both

those in which ¢ is even and those in which it is odd, will vanish, so that we shall

have ,
SF =SS o

which is constantly of the same value at all the points of the same level surface.

Taking the most general expression of U®, and observing that the constant
U(O) — U(O) a? 4 U(O) b2 4 U(O) c'2,
may be blended with U®, we shall have
R,2__Aa’2—|-Bb’2 +C2+Ddd +Edd+Fbc:

but @/, ¥/, ¢’ being the coordinates of R’ in the surface of the fluid, we have
& 2
p=d =0 g="
and these values being substituted, the result will be
1=Aa?4+By?4+C24+ Doy +Ew + Fy 2,
which is the equation of an ellipsoid, the coordinates #/, ¥/, ' being parallel to three
diameters intersecting at right angles. It is therefore demonstrated, that the ellipsoid

comprehends all the figures that will make the integral / %ﬁz, taken between the

assigned limits, of the same value at all the points of the same level surface, that is,
at all the points of any interior surface similar to the upper surface, and similarly
posited about the centre.

The foregoing reasoning is independent of the centrifugal force ; but by attending
to the rotatory motion which causes that force, it is easy to prove that the axis about
which the fluid revolves, or the diameter parallel to the coordinate 2/, must coincide
with one of the axes of the geometrical figure. For, there being no centrifugal force
at the poles of the axis of rotation in the surface of the fluid, the only force in action
at these points is the attraction of the mass. But the resultant of the forces urging
every particle in the surface of a fluid in equilibrium must be perpendicular to the
surface : and as there are no points on the surface of an ellipsoid at which the attrac-
tion of the mass is perpendicular to the surface, except the extremities of the three
axes, it follows that, with one or other of these, the axis of rotation of the fluid in
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equilibrium must coincide. The diameter parallel to 2’ being thus proved to be an
axis of the ellipsoid, we may assume that the other two coordinates are parallel to the
remaining axes of the geometrical figure, in consequence of which the equation of
the surface will become more simple, viz.

x% 2 zQ
1=772+7£y7§+;;m,

the three semiaxes being %, &/, &, of which £ is the axis of rotation.

Further, the figure of the fluid in equilibrium can be no other than a spheroid of
revolution. Draw a plane through the axis of rotation and any point (# ¥ %) in the
surface of the fluid. This plane will contain that part of the attraction of the spheroid
which is parallel to the axis of rotation, or to the coordinate #: it will also contain
the centrifugal force directed at right angles from the axis of rotation. The same
plane will also contain the resultant of the attractions parallel toy and z; for if it did
not, the resultant might be resolved into two forces, one contained in the plane, and
the other perpendicular to it; and the force perpendicular to the plane would partly
act in a direction touching the surface of the spheroid, which is inconsistent with the
equilibrium of the fluid. Wherefore, the whole attractive force at any point in the
surface of the spheroid is contained in a plane passing through the point and the axis
of rotation ; which obviously excludes ellipsoids with three unequal axes, and limits
the figures of equilibrium to spheroids formed by the revolution of an ellipsis about
the axis of rotation ; and as the centrifugal force necessarily causes the equatorial
diameter to be longer than the polar axis, it follows that the figure of the fluid in
equilibrium can be no other than an oblate elliptical spheroid of revolution, of which
the equation is

]C’Q
k2 = a2 _I.. k——e- (y? + z?)’

the fluid turning about %, the less axis.

By the foregoing investigation, the problem for determining the equilibrium of a
homogeneous planet in a fluid state is reduced to solving the equation of the upper
surface, which is an expression of a known form, as the figure of the fluid is ascer-
tained. The equation of the upper surface adjusts the oblateness of the spheroid to
the quantity of the centrifugal force. It is only this part of the problem which, if we
judge rightly, is fairly made out in the modes of investigation usually adopted ; for in
all these it is assumed that the figure of the fluid is an oblate elliptical spheroid, but,
except in MacrLauriN’s demonstration, the equilibrium is not proved on satisfactory
grounds. ID’AremBERT first observed, that in general more spheroids than one may

"Dbe in equilibrium with the same centrifugal force, or with the same velocity of rota-
tion ; and it is now well known that there may be two such spheroids, or one only,
or that no spheroid of the proposed matter can be found that will be in equilibrium
with the given quantity of centrifugal force. All this is pure mathematical deduction
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from an algebraic equation; it is attended with no difficulty, and is very fully dis-
cussed by all the authors who have written on the figure of the earth ; it would, there-
fore, be superfluous to treat of it here; but it may not be improper to add a few
words for the purpose of explaining in what manner the number of solutions of the
problem is limited by the nature of the equilibrium.

Let A B C represent an oblate elliptical spheroid of homogeneous fluid in equi-
librium by revolving about the axis PQ; and a ¢, an
interior level surface, which is therefore similar to the
upper surface A B C, and similarly posited about the cen-
tre : the stratum between the two surfaces will act upon
the fluid within the level surface in two ways, namely, by
pressure and by attraction. From the nature of the sphe-
roid, the attraction of the stratum upon every particle
within the level surface is zero ; and the pressure of the
exterior fluid acts upon every point of the same surface
with equal intensity : wherefore, the whole mass A B C being in equilibrium, if the
stratum be taken off, the remaining body of fluid @ b ¢ will be in equilibrium sepa-
rately. But another spheroid, o' ' ¢, of a different form, may be traced within A B C,
the less axes and the equators of the two figures coinciding, such that it will remain
in equilibrium separately, upon abstracting the exterior fluid. Every small portion
st of the surface @' b’ ¢’ is pressed inward by the exterior fluid; it also sustains a
pressure from within outward, caused by the attraction of the fluid on the outside of
the surface o' ' ¢ upon the particles within that surface. Now, although each of the
two contrary pressures varies from one point of the surface to another, yet the sphe-
roid may be so determined, that their joint action, or their difference, shall be the
same at every point of the surface. When the spheroid @' &' ¢’ has this figure, it will
be in equilibrium with respect to the action of the exterior fluid; and, if that be
abstracted, it will be in equilibrium separately, because the whole mass ABC is in
equilibrium. What has been said may easily be proved by calculation ; for the sphe-
roid A B C being given, we know the pressure of the exterior fluid upon s ¢; we know
also the attraction of the exterior fluid upon a particle of the spheroid o' ¥' ¢, for it is
equal to the difference of the attractions of the spheroids AB C and o' %' ¢ upon the
particle : and hence it is easy to deduce, that the relation between the oblateness and
the centrifugal force is expressed by the same equation in the spheroid o' ¥ ¢ and in
the level surfaces.

It thus appears, that in general there are two spheroids of the same matter, but not
more than two, which will be in equilibrium with the same rotatory velocity. If the
oblateness of A B C increase, that of o' §' ¢ will decrease ; and the two spheroids con-
tinually approaching the same figure, they will ultimately coincide in a limit at which
there is only one form of equilibrium. On the other hand, as A B C becomes more

© [ =2
Q\j/
&
D) oV
oa w
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nearly spherical, @' %' ¢’ will be more and more flattened ; so that, the centrifugal force
being zero and A B C a perfect sphere, o' &' ¢ will be an infinitely thin circle of fluid
particles in the plane of the equator.

The problem that has been solved leads to a consideration which it is important to
notice, because it relates to a principle of equilibrimin that has been very generally
adopted. It has been shown that the equation of the surface (2.) is indeterminate,
and admits of innumerable solutions; but in every figure which satisfies that equa-
tion, the other equation (1.), viz.

p=f%?+%(y2+z2)—0,

will hold at every interior point (z y z) of the mass of fluid. In this latter equation,
p is the pressure of any canal issuing from the point (xy 2) and extending to the sur-
face of the fluid ; and therefore, in every figure which satisfies the equation of the
surface, every such canal will exert the same pressure upon a molecule placed at the
point (zy ). Now of the innumerable figures that satisfy the equation of the surface
there is only one that is in equilibrium; and thus it is proved, that a mass of fluid,
without being in equilibrium, may assume many figures in which every interior par-
ticle is pressed with equal intensity by all the canals issuing from it and terminating
in the surface. And as neither the equation of the surface, nor the equal pressure of
all the canals extending from a molecule to the surface, is sufficient to secure the
equilibrium except when the forces are explicit functions of the coordinates; so
neither of the two properties can be employed in any other hypothesis respecting the
forces, to verify an equilibrium, that is, to prove that a proposed figure will be in
equilibrium. :

8. In the following problem the forces in action are known functions of the co-
ordinates, and the solution is deduced immediately from the theorem in No. 5.

ProsreEM II.

To determine the figure of equilibrium of a fluid at liberty, the particles being sup-
posed to attract one another with a force directly proportional to the distance, at
the same time that they are urged by a centrifugal force caused by revolving about
an axis.

As the attractions of the particles balance one another at the centre of gravity, in
order to free that point from the action of any forces the axis of rotation must pass
through it. ‘

Let @, y, = denote the coordinates of an attracted particle, and 2', 3/, &' those of an
element dm of the mass, the origin being at the centre of gravity, and @, ' being
parallel to the axis of rotation ; adopting for the unit of mass the whole given mass
of fluid, and for the unit of force the attraction of the whole mass collected in a point
upon a particle at the distance 1, the attraction of dm upon the assumed particle at
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the distance /' will be f'dm ; and the cosines of the angles which /' makes with @, y, =
being
z—a y—y z—2
f 5 f b f 2

the partial attractions, directed inward, and parallel to 2, y, z, will be

dm(@—2), dm(y—1v'), dm(z —2');

and, by integrating, the sums of the like attractions of all the molecules of the mass
are obtained, viz.

efdm—fa'dm, yfdm— fydm, sfdm— [ dm.
Now, by the property of the centre of gravity, we have
Saddm=0, fyydm=0, f¢ddm=0:
wherefore, the attractions of the whole mass respectively parallel to #, y, = will be

equal to :
zfdm, yfdm, 2)dm,
or simply to , y, 2, because /' d m is the unit of mass.

Let ¢ denote the centrifugal force at the distance 1 from the axis of rotation, and
estimated in parts of the unit of force ; then the action of this force urging the par-
ticle in the prolongation of y and 2 will be equal to ¢y and ¢=.

Now, if X, Y, Z denote the whole accelerating forces acting parallel to @, y, z, we
shall have :
X=2, Y=0—=9y, Z=(1—5¢s2;
which forces are therefore known functions of the point of action. Representing the
intensity of pressure by p, we obtain

—dp=ada+ (1 —:¢).(ydy+2zd2);
and, by integrating,

Cop=S% 40— L2

Q 2

which equation determines the pressure at the interior points of the fluid. The equa-
tion of the figure of the mass in equilibrium is obtained by making p = 0, viz.

_Z'Q y2+z2
C=§~+(l——i). ) .

Supposing, therefore, that ¢ is less than 1, or that the centrifugal force at the
distance 1 from the axis of rotation is less than the attraction of the mass collected
in a point at the same distance, the fluid in equilibrium will have the form of an
oblate elliptical spheroid of revolution.

As this problem is different from the first only in the law of attraction, it may be
alleged that the methods of solution should be similar. There would be no difficulty
in applying to it the same investigation employed in the first problem ; but in what-
ever manner we proceed, the distinction between the two cases will remain unchanged.



HOMOGENEOUS FLUID AT LIBERTY. 517

In the second problem, the forces acting upon a particle within the surface are the
same functions of the coordinates as the like forces acting upon a particle in the sur-
face; because the forces which urge a particle in any situation depend only on the
whole mass of fluid, and the distance of the particle from the centre of gravity. But
in the first problem, if we except the particular class of figures susceptible of an equi-
librium, the finding of which is an additional condition to be investigated, the forces
urging a particle within the surface are not deducible from the forces at the surface
merely by changing the coordinates of the point of action.

9. To complete the theory in this paper, it would be necessary to determine the
figure of equilibrium of a revolving mass of homogeneous fluid, on the supposition
that the particles attract one another with a force varying as any power of the distance.
The solving of this problem would enable us to decide whether the equilibrium be
possible in any other law of attraction but the direct proportion of the distance, or
the inverse proportion of the square of the distance. The principles that have been
laid down are sufficient to solve the problem enunciated in this general manner; but
the application of them would require mathematical discussions too extensive to be
entered upon at present. To conclude this paper, some observations will be made
that seem to be called for by the notions that prevail on the subject of which it
treats.

On MacravriN's . Demonstration of the Equilibrium of the oblate elliptical
Spheroid.

In treating of the figure of the earth, Newron begins with observing that a homo-
geneous mass of fluid, supposing its particles urged only by their mutual attraction,
would arrange itself in a form perfectly spherical. If this sphere acquire a revolving
motion about one of its diameters, a new force will be impressed on its particles,
causing them to recede from the axis of rotation ; and, in obedience to this force, the
fluid will subside at the poles and dilate itself in the direction parallel to the equator.
Newron assumes, without alleging any reason in support of his assumption, that the
revolving fluid will permanently settle in an oblate elliptical spheroid. Admitting

tacitly that this is the figure of equilibrium, he proves that the relative dimensions
of the spheroid depend upon the proportion of the centrifugal force to gravity at the
equator; and this proportion being ascertained by experiment in the case of the
earth, he finds that the equatorial diameter is to the polar axis as 230 to 229. The
whole of this speculation, when published in the Principia, was entirely new; it in-
volves many points of difficult investigation; and the ability has always been ad-
mired by which the difficulties are either overcome or evaded by ingenious approxi-
mations sufficiently exact and requiring the least possible calculation. But this
splendid theory was incomplete till it should be proved that a fluid sphere turning
upon an axis must assume the form of an elliptical spheroid. The attention of"
geometers was therefore turned to this point. The subject was treated by Mr. Jamgs
MDCCCXXXIV, 3 X
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StirLING in 1735, and by Crarravut in 1737, but only on the supposition of a spheroid
little different from a sphere; and the results obtained by these geometers perfectly
coincided with the determination of Newton. In a dissertation on the tides, which
shared the prize of the Academy of Sciences of Paris in 1740, MacLAaurIN made a
great addition to the Newtonian theory, by proving that any proposed elliptical
spheroid of homogeneous fluid would be in equilibrium if it revolved about its less
axis with a certain rotatory velocity, and by introducing in his demonstration accu-
rate notions respecting the conditions required for the equilibrium of a fluid entirely
at liberty.

If an oblate elliptical spheroid of homogeneous fluid revolve about the less axis,
the equilibrium of the mass will be secured if the resultant of the attractive and
centrifugal forces acting upon a particle in the surface be directed perpendicularly
towards the surface. In order to prove this, suppose that innumerable surfaces are
described within the spheroid, similar to the upper surface, and similarly posited
about the centre, and it will be easy to prove with respect to a particle in any of the
interior surfaces, that the resultant of its centrifugal force, and of the attraction upon
it of all the matter within the surface in which it is placed, is perpendicular to that
surface. Now it is proved in the Principia that all the matter between the upper
surface and any of the interior surfaces exerts no attraction upon a particle either
in or within that surface; and hence it follows that the resultant of the centrifugal
force of a particle, and the attraction upon it of all the matter of the spheroid, is
perpendicular to the interior surface passing through the particle. The interior
surfaces are therefore the true level surfaces of the spheroid, and the equilibrium of
the revolving mass is establishsd by the reasoning in the theorem in No. 5. From
this demonstration it would appear that the Newtonian property, according to which
the matter of a homogeneous stratum bounded by two similar and concentric ellip-
tical surfaces does not attract a particle within the stratum, is not merely accidental
to the equilibrium, but a condition necessary to its existence.

The equilibrium of the oblate spheroid may be made out by a different process.
The attraction of the mass upon one of its particles may be investigated ; and, when
this done, it is found that the attractions parallel to the equator and perpendicular
to the same plane, are proportional to the respective distances of the particle from
the axis of rotation and from the equator. It thus appears that the forces urging
any particle are known expressions of the coordinates of the point of action; and
therefore the solution of the problem is immediately deduced from the theorem in
No. 5. Now in this procedure there is no direct mention made of the Newtonian
property ; and hence it may, perhaps, be alleged that it is not essential to the
equilibrium, although it is a principal step in the former demonstration. But a
little reflection will show that the property in question is a condition no less neces-
sary in this than in the former investigation ; for it is by means of it that the forces
acting upon a particle are disengaged from the upper surface of the fluid, the boundary
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of the attracting mass, and are brought to depend entirely upon the situation of the
particle with respect to the equator and the axis of rotation. This second investiga-
tion, therefore, concurs with the first, in proving that the Newtonian property is
necessary to the equilibrium of the spheroid, and not merely accidental.

MacravriN’s demonstration is different in some respects from either of the two
investigations that have been mentioned. He requires three separate conditions for
the equilibrium : first, the resultant of the centrifugal force and the attraction of the
mass, must be perpendicular to the surface of the spheroid ; secondly, every particle
must be pressed equally in all directions ; thirdly, all the columns reaching from the
centre to the upper surface must balance and sustain one another. Now if the first
of these conditions be fulfilled, and that too whether the mass of fluid be an elliptical
spheroid or have any other figure, the other two will follow as necessary consequences.
It may be observed further, that a demonstration proceeding on an arbitrary enumera-
tion of properties, which may not be complete, makes a vague impression, and falls
short of the conviction produced by a proof that rests on determinate principles bear-
ing directly upon the point to be investigated. The conditions essential to Macravu-
RIN’s demonstration are only these two: first, the attraction upon a particle propor-
tional to its distances from the equator and the axis of rotation, which is peculiar to
ellipsoids, and necessarily connected with the Newtonian property ; secondly, the per-
pendicularity to the upper surface of the resultant of the forces acting upon a particle
contained in that surface: and notwithstanding the beautiful train of reasoning em-
ployed by the author, his demonstration would gain in precision and clearness by
omitting all that relates to the superfluous properties.

Cratravr’'s Theory.

To Cramraut belongs an important part of the theory of the figure of the earth.
He was the first that entertained correct notions respecting the effect to alter the form
of the terraqueous globe, produced by heterogeneity in its structure. At present we
confine our attention to his general equations of the equilibrium of fluids, and their
application to the case of a homogeneous planet. His theory is constructed with
great analytical skill, and is seducing by its conciseness and neatness. From the
single expression of the hydrostatic pressure are derived the equations of all the level
surfaces, and of the upper surface of the fluid. But these equations are not sufficient
in all cases to solve the problem. They are sufficient to solve it when the forces are
known algebraic expressions of the coordinates of the point of action: they are not
sufficient when the forces are not explicitly given, but depend, as in a homogeneous
planet, on the assumed figure of the fluid. In this latter case, the solution of the pro-
blem requires, further, that the equations be brought to a determinate form by elimi-
nating all that varies with the unknown figure of the fluid.

In the theory of Crairavr it is tacitly assumed that the forces urging the interior
particles are derived from the forces at the upper surface merely by changing the

3x2
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coordinates of the point of action *. Now there are cases, and the homogeneous
planet is one, in which the forces acting on the interior particles are not deducible, in
the manner supposed, from the forces at the surface; and with respect to such pro-
blems, the theory is silent, and has provided no means of solution.

But it will be satisfactory, and it is not difficult, to acquire just notions respecting
Crairaut’s theory, by a careful examination of the principles as they are laid down
by the author, for whose great abilities and high pretensions as a discoverer in science
we entertain the sincerest respect, although we dissent from him on some points. The
French geometer assumes for the foundation of his superstructure a mass of fluid,
HKI, in equilibrium . If / represent the force perpendicular to the surface of
HKI, at any point K, and % the thickness K s of an additional stratum on/; and if
the stratum be so determined that 4 X f shall have constantly
the same value at all the points of the surface; it will follow
that the pressure of the stratum upon the surface on which it
lies, is constant ; and hence the body composed of the stratum
and the original mass will be in equilibrium. In like manner,
if a second stratum be added to the new body in equilibrium,
the thickness being determined by the same condition as
before, a third body of fluid in equilibrium will be obtained,
consisting of two strata and the central mass. By adding more strata indefinitely,
the dimensions of the mass of fluid may be enlarged to any extent, at the same time
that the conditions of equilibrium are continually preserved. In all this it is evidently
supposed that no change in the figure of the successive surfaces is effected by the
strata laid upon them ; for without this admission the procedure would be nugatory,
and could lead to no determinate conclusion.

The investigation of Crairaur is very elegant and geometrical, and carries with it
the clearest evidence. It is entirely consonant to the theorem in No. 5. When it is
not extended beyond its proper assumptions, it leads to a sure, and in truth to the
only satisfactory principle of the equilibrium of a mass of fluid at liberty. It assumes
that the pressure of every new stratum upon the surface on which it is laid, is caused
solely by the forces in action at that surface, these forces being supposed to exert
the same energy on all the particles of the infinitely small thickness of the stratum,
and the thickness being so determined as to make the pressure constant. The pro-
cedure is agreeable to the usual rules of mathematical investigation, according to
which the forces are conceived, not to flow continuously as the coordinates increase,
but to vary from surface to surface by infinitely small gradations. Now this is very

* When the forces acting upon the interior particles assume singular jforms of expression at the surface,
CratravuT’s theory fails; and this makes the distinction in the text necessary. But the whole theory, founded
on an assumed principle, or upon an algebraic equation which determines the effect of the forces upon a par-
ticle taken individually, is so loosely delivered that it is difficult to speak of it with precision.

+ Théorie de la Figure de la Terre, Premitre Partie, § xxi.
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satisfactory when no cause of motion emanates from the fluid itself, and all the forces
in action depend merely on the place of a particle. But if the fluid in question consist
of attracting particles, will there not come into play the attraction of every additional
stratum upon all the fluid contained within it, of which force no mention is made by
Cratraur? The only cause assigned for the pressure of the stratum upon the fluid
below it, is the action of forces foreign to the matter of the stratum ; the attraction
of the stratum is inherent in that matter; the two causes of motion are distinct
from one another, and their different effects ought to be separately considered. The
procedure of Crairaur, although it is unexceptionable when the forces in action
depend only upon the position of a particle, seems chargeable with omission when
applied to fluids consisting of particles that act upon one another by attraction or
repulsion.

The initial body of fluid II K I is assumed to be in equilibrium ; the equilibrium
will not be disturbed by the pressure of the stratum o » /, which acts with equal in-
tensity at every point of the surface H K I; but if the fluid consist of attracting
particles, the attraction of the stratum o = / upon all the particles contained within
it may alter the form of the mass H K I, and the equality of pressure upon the
changed figure no longer existing, the equilibrium will be destroyed. This argument
has greater weight, because in the procedure of Crairauvr it is not the attraction of
one stratum only which is neglected, but the sum of the attractions of all the suc-
cessive strata, that is, no account is made of the attraction of a stratum of a finite
thickness upon the particles within it.

It may perhaps be alleged that the attraction of a stratum upon the interior fluid
is incomparably smaller than the forces which urge the particles of the stratum
itself, and therefore that the first force may be accounted as nothing in respect of
the other. Now the question is not about a comparison of forces different in degree,
but whether the stratum attracting the particles within it in all directions, has power
to move them and thereby to cause an alteration of figure. The procedure of
Crarmravt, by making every stratum exert a constant pressure upon the fluid below
it, leaves every particle of that fluid at liberty to obey the smallest impulse; and an
equilibrium cannot subsist unless the attraction of the stratum be either absolutely
zero, or cause a pressure urging every particle with equal intensity in all directions.
If the stratum be bounded by concentric spherical surfaces, or by elliptical surfaces
that are similar to one another and similarly posited, NEwron has proved that the
attraction of the stratum has no power to move the particles within it. Must these
important propositions be extended, tacitly and without examination, to all strata,
whatever be the bounding surfaces? If one bounding surface be spherical and the
other elliptical, or if both be elliptical but dissimilar, will the attraction of the stra-
tum be ineffective to move the interior particles? The plain truth is that Crairaur
has not attended to the attraction of the stratum, and consequently the application
‘of his theory is limited to fluids consisting of particles that have no action upon one
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another. The inadvertence with which the investigation of Crarraur is chargeable,
seems not to have been noticed, at least it is not remedied, by any of the authors
who have subsequently handled the subject.

The attraction of the stratum being admitted, its effect becomes a subject for ma-
thematical investigation. We may suppose a stratum of homogeneous fluid bounded
by two surfaces of any figure, AB C and a b ¢; and we may
estimate the pressure tending to move an interior particle
P in any direction, which is caused by the attraction of the
stratum upon the contained fluid. Let dm represent an
elementary portion of the stratum ; ', 9/, ¢, the coordinates
of dm ; x,y, zx those of P; and f the distance between P and

dm. The direct attraction of dm on P is equal to d.?’g—n; and the partial attractions
tending inward parallel to z, y, =, are respectively
dm z—2a dm y—vy dm z — 2
AR R Y R Y
or, which is the same,
dm df dm df dm d f
fs dz fe dg/ fa dz

and the total partial attractions on P of all the matter of the stratum will be
d m dm d m
dx dy 2 dz 2
the sign of integration extending to all the molecules of the stratum. Now if p re-
present the intensity of pressure, we shall have

d m d m
d. d. ya ‘d
(Ftes LT 0y T

dp =
and by integrating,
p=bf%?-c.
In this formula, / {?77—'-1 is the sum of all the molecules of the stratum divided by

their respective distances from P, and C is the like sum at any arbitrary point which
may be assumed in the inner surface of the stratum at ¢, and may be joined to P by

a narrow canal having any direction: and if we write [ f %—?] for C, that is, for the

sum of all the molecules of the stratum divided by their respective distances from a,
the value of p in the formula

=/~ L/7]

will be equal to the intensity of pressure urging the particle P in the direction of the
canal. It appears, therefore, that the effect of the attraction of the stratum to move
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the particle P is not infinitely little ; it is expressed by the difference of two definite
integrals ; and, however small in degree the pressures urging P on different sides
may be supposed, yet, if they be unequal, the particle must move in the direction in
which the force is greatest. By omitting the attraction of the stratum, the procedure
of Cratraur is evidently defective, and applicable only to such fluids as consist of par-
ticles that have no action upon another.

But the investigation of Crairaur, although limited as it is laid down by the
author, when it is stated with all the generality of which it is susceptible, will be
found on due reflection to contain the only true and satisfactory principle of the
equilibrium of a mass of fluid at liberty*. To render it perfectly general, nothing is
wanting but to take into account all the forces necessary to complete the equilibrium
at every separate stage of the procedure. The original mass HK I being supposed
in equilibrium, the stratum on / must be adjusted as Crairaur directs, so as to exert
a constant pressure ; but a new condition must be added, that the body of fluid HK I
be in equilibrium by the attraction of the stratum, that is, the pressures caused in the
mass H K I by the attraction of the stratum, must urge every particle of it with the
same intensity on all sides. When these conditions are fulfilled, the body of fluid,
consisting of H K I and the stratum o=/, will be in equilibrium, and its upper sur-
face will be stable as was that of H K I, and capable of supporting additional strata.
A new mass in equilibrium will be formed by adding a second stratum, so as to fulfill
the same conditions as the first, that is, it must press with the same intensity at all
points of the surface below it, and its attraction must have no power to move the
particles contained within it. Continuing the same procedure and adding more strata
indefinitely, a body of fluid of any dimensions will be formed, which is in equilibrium,
all the forces in action being taken in account.

If we now examine a mass of fluid constructed by the foregoing process, so as to
be in equilibrium, it is obvious that all the successive surfaces are deduced in the
same manner from the forces acting on the particles contained in them. If the forces
be explicit functions of the coordinates of their points of action, the condition that
every surface must be pressed with the same intensity at all its points, determines the
general equation of all the surfaces, nothing varying from one surface to another but
the magnitude of pressure, as in the theorem in No. 5. The upper surface contains
all the points of the fluid at which there is no pressure, and its equation alone ascer-
tains the figure of equilibrium. This is the theory of Crarravur in its full extent, and
it is comprised in the theorem alluded to: but if the forces in action are not explicit
functions of the coordinates, but depend upon the very figure to be investigated, the
condition that the pressure must be constant in every successive surface, leads to an

* It is obvious that all the steps of Crarraur’s procedure must be perfectly similar. As the central body
H K I is supposed in equilibrium, so the addition of every stratum must produce a body in equilibrium, all the
causes capable of moving a particle being taken into account ; if not, the process cannot be continued, or will
fall into error.
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equation that merely expresses a relation of two things alike unknown, namely, the
figure of the fluid which is sought, and the forces resulting from that figure; and in
this case it is necessary to take into account some other properties peculiar to
the problem for the purpose of completing the solution. When the fluid consists of
attracting particles, the equilibrium requires that the attraction of a stratum on the
outside of any of the interior surfaces have no power to move the particles within
that surface. Now it has been shown that the attraction of the stratum on the out-
side of the surface a b ¢, causes a pressure, p, urging an interior particle at P, in the
direction of a canal reaching from P to a point « in the surface a b ¢, the quantity of
which pressure is determined by the formula

d m *d m
r=/F -1/
and it is obvious that p will be the same to whatever point of the surface a b ¢ the
canal is drawn, and consequently that the particle will have no tendency to move in

b, d ]
any direction, if [ f —72-2 ] have constantly the same value at all points of that sur-

face. On the other hand, if [ f i}_@] have different values at different points of the

surface abc, the pressures upon P will be unequal, and the fluid will not be in
equilibrium. Wherefore, in order to secure the equilibrium we must add to the
constant pressure at all the points of every interior surface, as required by Crarravr,
or to the equation common to all these surfaces, this other condition, that the sum
of the molecules of any stratum divided by their respective distances from a point
in the inner surface of the stratum have constantly the same value at all the points
of the surface. These conditions are the same with what has been investigated in
the first part of this Paper; and, by means of the analysis in No. 7, they demon-
strate that the figure of equilibrium of a homogeneous planet can be no other than
an oblate elliptical spheroid of revolution.

In order fully to illustrate the investigation of CrairauT, and to bring it completely
within the power of the understanding, some further discussion is still required. The
French geometer sets out with assuming, that the central mass HK1I is in equili-
brium ; upon this all his inferences are grounded ; but,in drawing the conclusion, he
dismisses the first assumption, and substitutes for it the supposition that the central
body of fluid is infinitely small. It may therefore be made a question, whether the.
results obtained are modified in any manner by the shifting of the original hypothesis.

The successive strata being so adjusted that the forces urging their particles are
perpendicular to their surfaces, it is obvious that, upon every addition, the forces in
action at the upper surface will be directed perpendicularly towards that surface,
saving an abatement that must be made for the inequality of pressure upon the cen-
tral mass, when that is not in equilibrium. But if the central mass be infinitely
small, whether it be in equilibrium or not, will depend upon the action of very small.
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forces, and the effect of these to vary the direction of the forces in action at the suc--
cessive upper surfaces from exact perpendicularity, will continually become less and
less, and may be ultimately neglected. No objection can therefore be made to sub-
stituting, for the equilibrium of the central mass, the supposition that it is infinitely
small, in so far at least as it is purposed to construct a body of fluid such that the
forces in action at the upper surface shall be perpendicular to that surface.

If we suppose that the forces urging the particles of the fluid are expressed by
known and explicit functions of the coordinates of their point of action, the body of
fluid, as it acquires finite dimensions, will likewise approach continually to a known
figure ; for the equation of the surface, deduced from the perpendicularity of the
forces, has a determinate form, which ascertains the figure of the mass when its vo-
lume is given. In this case, too, all the forces acting upon every individual stratum
being taken into account, and the strata exerting a constant pressure upon one an-
other, the equilibrium of a mass of fluid will be fulfilled simultaneously with the con-
dition of the perpendicularity of the forces to the upper surface.

It remains to examine what will be the result when the central body H K1, sup-
posed infinitely small and of any figure, consists of attracting particles. In this case
there is no question about an equilibrium ; because, although the forces at the suc-
cessive upper surfaces are exactly estimated, CrairauT has neglected the attraction
of every stratum upon the body of fluid to which it is added, an omission which is
fatal to an equilibrium of the mass. But as the procedure of that geometer always
induces a figure which fulfills the condition of the perpendicularity of the forces to
the upper surface, it is interesting to inquire whether, in the case of an attraction
between the particles, the resulting figure is determinate and invariable, or indeter-
minate and varying with the figure of the small central body. Assume any body of
finite dimensions similar to the small central mass HK I, and consisting of the same
fluid ; and supposing, for the sake of simplicity, that the law of attraction is that of
nature, it is easy to prove, that the attractive forces acting in similar directions at
similar points of the surfaces of the two bodies have constantly the same proportions
as the linear dimensions of the bodies : and if the two bodies revolve with the same
rotatory velocity about axes similarly placed, the centrifugal forces acting in similar
directions at similar points of the surfaces, will likewise be to one another as the linear
dimensions of the bodies. It appears, therefore, that the forces perpendicular to the
surface of the central body HK I, although they are infinitely small, yet being pro-
portional to the like forces at the surface of the finite body, they have given and finite
proportions. Now upon the proportion of these forces depend the relative thickness
and figure of the first additional strata at least; and as no limit can be assigned
when this influence will cease, the conclusion undoubtedly is, that the ultimate sur-
face will vary with the figure of the central mass. And thus the form induced by the
procedure of Crairavur upon a mass of fluid consisting of attracting particles is inde-
terminate, and susceptible of being varied indefinitely.

MDCCCXXXIV. 3y
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What has been said is well elucidated by the investigation that has been given of
the exact figure of equilibrium, when all the forces in action are taken into account.
Assuming that the problem is possible, it has been found that the supposition is veri-
fied, and all the conditions of equilibrium fulfilled, when that body is an oblate ellip-
tical spheroid, and only when it has that figure. If the body H K I, whether its
dimensions be finite or infinitely small, have the figure mentioned, and if the centri-
fugal and attractive forces be so adjusted that their resultant is, at every point, per-
pendicular to the surface of the spheroid, the procedure of Crairaur will generate a
series of figures all similar to one another, and all in equilibrium ; but, as this propo-
sition is exclusive, if we substitute for HK1I a body of a different form, supposed
infinitely small, none of the successive figures will be in equilibrium, although in the
long run, when they have acquired finite dimensions, they will fulfill the condition of
the perpendicularity of the forces to the upper surface.

The discussion in which we have been engaged is of importance, because it shows
the insufliciency of the methods usually employed for determining the equilibrium of
a homogeneous fluid consisting of attracting particles. In this problem an equilibrium
is not sufficiently established by making the upper surface perpendicular to the re-
sultant of the forces acting upon the particles contained within it, nor by proving
that all the narrow canals diverging from an interior particle, and terminating in
the surface, press with equal intensity ; nor can the problem be solved by attending
solely to the forces that act upon the particles individually *.

On the Method of Investigation followed in the Paper published in the Philosophical
Transactions for 1824.

The equilibrium of a homogeneous planet may likewise be investigated by the
method employed in my first paper on this subject, published in the Philosophical
Transactions for 1824. As this method admits of being treated in few words, and
will contribute to illustrate the principles on which the solution of the problem de-
pends by placing them in a new light, I am induced to add a short explanation of it,
more especially as it will give me an opportunity of stating clearly what is really
liable to objection in that paper.

* In a Memoir published in 1784, LreEnDRE has arrived at this conclusion, that the elliptical spheroid is
exclusively the figure of equilibrium of a homogeneous planet. To the mathematical processes employed by
that eminent geometer, no objections can be made. But, on examination, it will appear that the grounds on
which his investigation really rests, are these two : first, the equation of the upper surface of the fluid, which is
a necessary condition of equilibrium ; secondly, an expression for the radius of the spheroid assumed arbitra-
rily and without reference to an equilibrium. Such a procedure can never be admitted as a complete and an
& priori solution of the problem, unless it were first proved that every figure that can possibly fulfill the con-
ditions of equilibrium is necessarily included in the expression assumed for the radius of the spheroid. No
particular spheroid can be deduced from the equation of the upper surface alone, without first making a sup-
position respecting the expression of the radius: and this is an evident proof, that the equation is indetermi-
nate and comprehends many different figures,
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Let ABC represent a body of homogeneous fluid which
revolves about the axis I K, passing through the centre of
gravity G ; and describe an interior surface a b ¢, similar to
the upper surface A B C, and similarly posited about the point
G : if we suppose that the mass A B C is in equilibrium by the
action of the centrifugal force, and the attraction of its parti-
cles in the inverse proportion of the square of the distance, it
is a property derived from the particular law of attraction and
the nature of a centrifugal force, that every other body of the
same fluid, as a b ¢, similar to A B C, similarly posited about the common centre of
gravity G, and revolving about the same axis K H, will be separately in equilibrium
by the centrifugal force of its particles and the attraction of its own mass. It would
be superfluous to repeat the demonstration of this proposition here, as it is attended
with no difficulty, and has not been contested. And because the body of fluid @ b ¢ is
separately in equilibrium with respect to the centrifugal force of its particles and the
attraction of its mass, it must likewise be in equilibrium with respect to the other
forces that act upon it : for if it were not so, the whole body of fluid A B C would
not be in equilibrium.

Now the only force external to the mass b ¢, and tending to change the figure of
that mass, is the attraction of the exterior stratum upon the interior particles. Let
M be any particle within the stratum : the several forces
which act upon it are, first, the centrifugal force; secondly,
the attraction of the mass @ b ¢; and, thirdly, the attraction
of the exterior stratum. On account of the separate equili-
brium of the mass a b ¢, the combined action of the two first
forces has no tendency to move the molecule M ; and there-
fore the equilibrium of the whole mass A B C requires that
the attraction of the exterior stratum be ineffective to move
the same molecule. Thus every molecule M within the surface a b ¢ must be urged
equally by the pressures which the attraction of the stratum causes in all canals
originating at the molecule, and terminating in the surface @b c. 'This is the same
condition to which every other mode of investigation has led ; and as the mathemati-
cal application of this property to determine the figure of equilibrium has already
been fully detailed, it need not be repeated here.

In order to leave nothing unexplained, it will be proper to remark, that the interior
surface a b ¢ is a level surface, that is, it is perpendicular at every point to the re-
sultant of all the forces which act on a particle contained in it ; for the centrifugal
force of a particle at @, and the attraction upon it of the mass a b ¢, have their re-
sultant perpendicular to the surface a b ¢, because the body of fluid @ b ¢ is separately
in equilibrium : and the attraction of the stratum upon the particle at @ is perpendi-
cular to the surface a b ¢, because the sum of all the molecules of the stratum, divided

3Y2
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by their respective distances from any point in the surface a b c, has the same inva-
riable quantity. It follows from what is now proved, that the exterior fluid presses
with the same intensity at every point of the interior surface a b c.

- The least attention to the internal pressures at the surface a b ¢, and to the forces
by which these pressures are caused, will show that the equilibrium of the mass ABC
is secured by these two conditions : first, the resultant of the forces in action at the
exterior surface must be directed perpendicularly towards that surface ; and secondly,
the level surfaces, that is, the interior surfaces, which are perpendicular to the re-
sultant of all the forces acting upon the particles contained in them, must be similar
to the outer surface, and similarly posited about the centre of gravity. These con-
ditions of equilibrium, although enunciated in different terms, it will readily appear
are not inconsistent with those before laid down, but are equivalent to them, and
must necessarily bring out the same result.

The same things that have just been proved were investigated in the paper on this
subject published in the Philosophical Transactions for 1824. There is no inaccuracy
in that paper in deducing the conditions which the equilibrium requires to be fulfilled.
These are, the perpendicularity to the upper surface of the resultant of the forces in
action at that surface, and the immobility of a particle by the attraction of a stratum
within which it is placed, and which is bounded by two surfaces similar and similarly
posited to the upper surface. What is really exceptionable in that paper consists in
the manner in which the second of the true conditions of equilibrium is conceived
to be fulfilled. It is supposed in the paper that every individual particle within the
stratum is attracted by the matter of the stratum so as to be drawn in all directions
with equal intensity, which no doubt fulfills what is required, and is exact in par-
ticular figures; but being deficient in generality, it is an improper foundation on
which to place the determination of the figure of equilibrium. To correct this mis-
conception, it must be observed that the stratum, by attracting the particles within
it, produces pressures in every part of the interior mass; and the immobility of a
particle requires that it be pushed by the surrounding fluid with equal force in all
directions. The difference between the two modes of action will be stated with most
precision in mathematical language.

Assume a particle within the stratum, f being its distance from dm, a molecule
of the stratum ; the condition that the particle be attracted by the stratum equally

. . . . d
in all directions, requires that the 1ntegral‘/‘7n—z, extended to all the molecules of the

stratum, have constantly the same value at all the points within the stratum; and
the condition that the particle be at rest by the equal pressure of the surrounding

. N d .
fluid, requires that the same integral f 773 have a constant value at all the points of

the lower surface of the stratum. The second determination, which admits the in-
tegral, although it must be constant in any one surface, to vary in any manner in
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passing from one to another, is perfectly general; it embraces the full extent of the
problem, and comprehends the first mode of action as a particular case. It happens
that either of the two ways of rendering the attraction of a stratum ineffective to
move the particles contained within it, leads precisely to the same final results in
determining the figure of equilibrium of a homogeneous planet, which, although it
does not excuse the misconception, makes the correcting of it less difficult. In con-
clusion, what is exceptionable in the paper of 1824 has already been explained pub-
licly ; and the paper in the Philosophical Transactions for 1831 is not liable to the
same reproach.

APPENDIX, containing the Investigation of some Algebraic Formulas.

1
s —2sry

1. Development of — used in No. 7.

If we assume

s—re=,/s—=2sry 412
the value of z will be

1 r
g=y+5.5E=1):

now considering g as a function of y, and applying the theorem of LacranGk, we

deduce o dfyo)
1 1 r -1
=y+—§-.—§~(7 l)—!—1 .—Q.?.JE—;~+,&C;;

and by substituting this value in the assumed formula, we obtain
1 7 1 1 7 d ('y —1)

—_ (2 - —_—— — .
g 5= D—13 5 7 gy — &

~/32—2sr7+r2=s—rfy—

then by differentiating with respect to y, and dividing by s », we finally obtain

d('y—])_l_ 1 1 ﬁ dd('y—-l)_i_&c
1.2 23 ¢

1
Vst —2sry +1°

1 1 r

This expression of the development is investigated differently in the Philosophical
Transactions for 1824.

2. Demonstration of the theorem used in No. 7.

It is obvious that ¢ and ¢ are the two sides of a spherical triangle, = — &' being
the included angle, +/ the third side, and ¢ the angle opposite to ¢ ; wherefore, be-
cause y = cos v and /1 — 92 = sin 4}, we have by the known properties of spherical
triangles,

cosd =cosd.y+sind. /1 — 9%cosc

sin ¢ sin (w — @) = /1 — ¢Zsine

sin ¢ cos (w — ') = sin 0.y — cos d../1 — 9% cos .
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For the sake of brevity put cosd = a, sindcosw = /1 — a®cos @ = b, sin ¥ sin =
= /1 — @sinw = c¢; and from the last expressions we readily deduce

d=cosl =a.y+J1—a2./1—12cosa
b =sindcosa'=b.y —acosw.\/1T—y2cose+sinw,/1 — ¢2sine

¢ =sinfdsine’' =c.y — asinw.,/1 — y?cosc — cosw.,/1 — ysino.
If these values be substituted in

m ! g
a” v ",

and the several powers be expanded and reduced to terms containing the sines and
cosines of the multiples of the arc s, the result will be of this form:

r® + (1 — 7‘2)%. T cos # + (1 — -;/2)% T®cos 20 +,&ec.
A nF A2
+(1—=9)" AV sinc+ (1 —19?% A" sin20¢ 4, &ec,,

the expressions I and A® being integral functions of ¥ ; and it is to be observed

that the index of the highest power of y in T cannot exceed m + m' -+ m". If we
now multiply by d & and integrate between the limits ¢ = 0 and ¢ = 2 7, we shall get

f’mb'm’ do=2= x T
Wherefore, attending to the expression of C(i), we have

® Y ” ”L' 4 t —
Sy da €V = Gy Sy T S =

1
ot * 1.2, 3
Now it is easy to prove that

9_])i—0

when # is less than i, the integral being taken between the limits y = 4 1 and

y = — 1: and since the highest power of y in T does not exceed m 4+ m' 4 m', it
must be less than ¢; and hence it follows that the integral under consideration is
equal to zero.



